
On Modeling Linked Open Statistical Data

Evangelos Kalampokisa,b, Dimitris Zeginisa,b,∗, Konstantinos Tarabanisa,b

aUniversity of Macedonia, Information Systems Lab, Egnatia 156, Thessaloniki 54006, Greece
bCentre for Research & Technology – Hellas, Information Technologies Institute, 6th km Xarilaou - Thermi, Thessaloniki 57001, Greece.

Abstract

A major part of Open Data concerns statistics such as economic and social indicators. Statistical data are structured in a multi-
dimensional manner creating data cubes. Recently, National Statistical Institutes and public authorities adopted the Linked Data
paradigm to publish their statistical data on the Web. Many vocabularies have been created to enable modeling data cubes as RDF
graphs, and thus creating Linked Open Statistical Data (LOSD). However, the creation of LOSD remains a demanding task mainly
because of modeling challenges related either to the conceptual definition of the cube, or to the way of modeling cubes as linked
data. The aim of this paper is to identify and clarify (a) modeling challenges related to the creation of LOSD and (b) approaches
to address them. Towards this end, nine LOSD experts were involved in an interactive feedback collection and consensus-building
process that was based on Delphi method. We anticipate that the results of this paper will contribute towards the formulation of
best practices for creating LOSD, and thus facilitate combining and analysing statistical data from diverse sources on the Web.

Keywords: Open Data, Linked Open Statistical Data, Modeling Challenges, Delphi Method

1. Introduction

International organizations, governments, and companies are
increasingly opening up their data for others to reuse [1, 2, 3].
A major part of open data concerns statistics [4, 5, 6] such as
demographics (e.g., census data), economic, and social indica-
tors (e.g., number of new businesses, unemployment). Statisti-
cal data are organized in a multidimensional manner, and thus
they can be conceptualized as data cubes, where a measured
variable (e.g., unemployment) is described based on a number
of dimensions (e.g., geography and time). These data can be an
important primary material for added value services and prod-
ucts, which can increase government transparency, contribute
to economic growth and provide social value to citizens [7, 8].

Linked data has been introduced as a promising paradigm for
opening up data [9] because it facilitates data integration on the
Web [10]. In statistics, linked data enable performing analytics
on top of disparate and previously isolated datasets [11, 12, 13].
As a result, many National Statistical Institutes and public au-
thorities (e.g., Scottish Government, Flemish Government, Ital-
ian National Institute of Statistics) have already used the linked
data paradigm to publish statistical data on the Web [14, 15].

Many vocabularies have been created to enable modeling
data cubes as RDF graphs. Examples include the RDF data

∗Corresponding author at: University of Macedonia, Information Systems
Lab, Egnatia 156, Thessaloniki 54006, Greece

Email addresses: ekal@uom.edu.gr (Evangelos Kalampokis),
zeginis@uom.gr (Dimitris Zeginis), kat@uom.edu.gr
(Konstantinos Tarabanis)

cube (QB) vocabulary [16], the Simple Knowledge Organiza-
tion System (SKOS) vocabulary [17], and the Extended Knowl-
edge Organisation System (XKOS) vocabulary [18]. Some of
them (e.g., QB and SKOS) have been also proposed as recom-
mendations by the World Wide Web Consortium (W3C), and
thus they are widely adopted. In addition, controlled vocab-
ularies that define widely used statistical concepts have been
created. Examples include the QUDT units vocabulary1 and a
linked data transformation of the Statistical Data and Metadata
eXchange (SDMX) standard2.

However, the creation of Linked Open Statistical Data
(LOSD) remains a demanding task mainly because of modeling
challenges related either to the conceptual definition of a cube,
or to the way of modeling cubes as linked data. The former re-
gards challenges such as the number of measures or the number
of units to include in a cube, while the latter is related to (a) the
lack of clarity on the way to apply the proposed vocabularies,
e.g., how to model spatio-temporal information [19], and (b)
the lack of specialized standards [20], e.g., there is no standard
controlled vocabulary for the measures of a cube. All the above
modeling challenges are currently addressed by data publishers
in an ad hoc manner, and thus they hinder publishing LOSD in
a uniform way that would facilitate their wide exploitation [21].

The aim of this paper is to identify and clarify modeling
challenges related to the creation of LOSD and approaches
to address them. Towards this end, nine LOSD experts were

1http://qudt.org/
2https://github.com/UKGovLD/publishing-statistical-data

Preprint submitted to Journal of Web Semantics November 16, 2018



involved in an interactive feedback collection and consensus-
building process. The experts indicated and evaluated model-
ing challenges and approaches to address them, facilitating this
way their understanding.

The method employed for the experts involvement was Del-
phi [22], which uses a questionnaire with multiple iterations
to collect feedback until a stability in the responses is attained.
The goal is to build consensus among experts on the approaches
that can be adopted to address LOSD modeling challenges. The
results presented in this paper can be used as a guidance for
LOSD publishers. We also anticipate that our analysis will con-
tribute towards the formulation of best practices for publishing
LOSD, and thus it will facilitate combining and analyzing sta-
tistical data from diverse sources on the Web.

The rest of the paper is organized as follows: Section 2
presents the method that was followed, Section 3 presents the
state of the art analysis regarding LOSD standards, Section 4
presents the results of the Delphi method including an analysis
of the LOSD modeling challenges and the recommended ap-
proaches in which consensus was reached among the experts.
Finally, Section 6 summarizes the results and discusses open
challenges remaining to be explored.

2. Method

In order to identify and clarify LOSD modeling challenges
and approaches to address them, we involved experts. The
method that was employed is Delphi [22], which facilitates
consensus-building [23] by using a questionnaire with multiple
iterations to collect feedback until a stability in the responses
is attained [24]. It also enables experts to re-assess an initial
judgement based on the feedback provided by other experts.

One of the characteristics of Delphi is that although partici-
pants remain anonymous to each other, they are not anonymous
to the researcher [25]. Their identity is not revealed, even after
the completion of the final report. This prevents the domina-
tion of some participants (e.g., because of their personality or
reputation), which is usually a concern when using group-based
methods to collect information.

Delphi can be continuously iterated until consensus is
achieved. However, literature has pointed out that two or three
iterations are often enough to collect the needed information
and reach sufficient consensus [26]. The two rounds of the pre-
sented study are the following:

Round 1: Traditionally the first round of the Delphi method
begins with an open-ended questionnaire. However, a common
modification uses a structured (aka closed) questionnaire that
is based upon a preparatory phase. We adopted this modifica-
tion to create a structured questionnaire. The preparatory phase
contained: (i) analysis of the literature on the data cube model
(Section 3.1) to identify the main modeling constructs related to
statistical data, (ii) involvement of experts to identify the main
LOSD modeling challenges, and (iii) analysis of LOSD stan-
dards (e.g., QB and SKOS vocabularies) to identify approaches
related to the modeling challenges (Section 3.2).

The structured questionnaire of the first round asked experts
to review, select or rank the initially identified approaches re-

lated to the modeling challenges. As a result, areas of disagree-
ment/agreement were identified. The results of Round 1 in-
cluded advantages/disadvantages of the publishing approaches
as well as other publishing approaches not identified at the
preparatory phase.

Round 2: The collected feedback of the first round was or-
ganized and a second questionnaire was created. This question-
naire was re-structured to be more comprehensive and incorpo-
rated the advantages/disadvantages identified at the first round
to provide additional insights to the experts. It also contained
approaches of the first round in which consensus was achieved
so that experts can review them. In every question, the experts
were asked to state the rationale behind their choice. The re-
sult of Round 2 included all the LOSD modeling challenges, an
analysis of the approaches related to these challenges, and all
the approaches where consensus was achieved.

The selection of appropriate experts is very important in a
Delphi study since it affects the quality of the produced results.
Usually, around ten experts are sufficient if their background is
homogeneous. In our study, we included 9 experts in the area
of LOSD:

• An expert involved in the creation of the LOSD portals
of the Scottish Government3 and the UK Department for
Communities and Local Government (DCLG)4.

• An expert involved in publishing of LOSD for the Flemish
Government5.

• An expert involved in the creation of the LOSD portal for
the European Commission’s Digital Agenda6.

• An expert involved in the creation of the portal of the Ital-
ian National Institute of Statistics (ISTAT)7.

• An expert involved in the creation of the QB vocabulary.

• An expert who created LOSD using data from interna-
tional organizations such as Eurostat, OECD, IMF and
World Bank.

• An expert working for the National Institute of Statistics
and Economic Studies (INSEE).

• An expert working in academia.

• An expert working in industry.

The study took place in 2017 and comprised two Delphi
rounds that lasted two months each. In order to facilitate the
process we exploited Mesydel8 an online service that supports
Delphi enabling the participation of multiple experts around the
globe.

3http://statistics.gov.scot
4http://opendatacommunities.org
5https://id.milieuinfo.be
6http://digital-agenda-data.eu/data
7http://datiopen.istat.it
8https://mesydel.com

2



3. Preparatory phase: State of the art analysis

3.1. Data Cube model

Statistical data usually concern aggregated data monitoring
social and economic indicators (e.g., population size, inflation,
trade, unemployment) [6]. Such kind of data can be described
in a multidimensional way, where a measure is described based
on a number of dimensions, e.g., unemployment rate can be
described based on geography and time. Thus, statistical data
can be conceptualized as a data cube [27]. Hence, we onwards
refer to statistical data as “data cubes” or just “cubes”.

The data cube model has already been defined in the litera-
ture [28, 29, 30, 31], and comprises a set of elements including
measures (e.g., unemployment rate), which represent numeri-
cal values, and dimensions (e.g., geography and time), which
provide contextual information for the measures. Each dimen-
sion comprises a set of distinct values (e.g., for the geographical
dimension the values “Greece”, “France”, “Italy”) that can be
hierarchically organized into levels representing different gran-
ularities (e.g., the geographical dimension may have both coun-
tries and regions). The location of each cell of the cube is spec-
ified by the values of the dimensions, while the value of a cell
specifies the measure (e.g., the unemployment rate of “Greece”
in “2016” is “23.1%”).

3.2. Standards for Linked Open Statistical Data

Linked data paradigm is based on semantic Web philosophy
and technologies but it is mainly about publishing structured
data in RDF using URIs rather than focusing on the ontological
level or inferencing [32]. A good approach in linked data is to
re-use standard vocabularies to encode data and meta-data [33].
In the following paragraphs we describe standard vocabularies
for publishing LOSD.

The QB vocabulary [16] is a W3C standard for publish-
ing statistical data on the Web using the linked data prin-
ciples. The core class of the vocabulary is the qb:DataSet
that represents a cube, which comprises a set of dimensions
(qb:DimensionProperty), measures (qb:MeasureProperty), and
attributes (qb: AttributeProperty) to represent structural meta-
data such as the unit of measurement. The declaration
of the dimensions, attributes, and measures is done at the
qb:DataStructureDefinition (abbreviated as DSD) which de-
fines the structure of the cube. Finally a qb:DataSet has multi-
ple qb:Observation that describe the cells of the cube.

At linked data cubes it is a common practice to re-use prede-
fined code lists to populate the dimension values. For example,
the values of the time dimension can be obtained from the code
list defined by reference.data.gov.uk or the values of the
unit of measure can be obtained from the QUDT units vocab-
ulary9. However, predefined code lists does not always exist,
so new code lists should be specified using standards such as
the QB vocabulary or the Simple Knowledge Organization Sys-
tem (SKOS) [17] vocabulary. The values of the code list may
also have hierarchical relations which can be expressed using

9http://qudt.org/

the SKOS vocabulary (e.g., skos:narrower), the QB vocabu-
lary (e.g., qb:parentChildProperty) or the XKOS [18] vocabu-
lary (e.g., xkos:isPartOf ). XKOS is an unofficial extension of
SKOS proposed by the DDI alliance, that enables the modeling
of hierarchical structures in levels (xkos:ClassificationLevel).

Finally, a UK Government Linked Data Working Group10

has developed a set of common concepts like dimensions,
measures, attributes and code lists that are intended to be
reusable across data sets. The definition of these con-
cepts is based on the SDMX guidelines11. For exam-
ple, dimensions like the sdmx-dimension:timePeriod, sdmx-
dimension:refArea, sdmx-dimension:sex, sdmx-dimension:age,
measures like sdmx-measure:obsValue and attributes like sdmx-
attribute:unitMeasure have been proposed. These resources are
not part of the QB vocabulary, however they are widely used by
existing linked statistical data portals.

All the above standard vocabularies facilitate the publishing
of LOSD. However, in some cases there is lack of clarity on
how to apply these standards because they allow the adoption
of different valid publishing approaches.

4. Delphi Results: Challenges and Approaches

This section presents the results of the Delphi method. It con-
tains all the identified LOSD modeling challenges, an analysis
(advantages/disadvantages) of the approaches related to these
challenges and the approaches where consensus was achieved
among the experts. We should also note that many challenges
have not been addressed, and thus open challenges remain to be
explored.

We use the following example throughout the Section to clar-
ify the modeling challenges:
John works for the National Statistical Institute of Belgium. He
is in charge of publishing last year’s data about unemployment
and poverty in the regions of Belgium. These data refer to var-
ious groups of people based on their age and gender. John de-
cided to exploit linked data technologies in order to improve
the quality and reusability of the data. The data at hand are of
multi-dimensional nature, and thus they should be modeled as
a cube. John needs to define the measures, units, dimensions
and code lists. Some of the challenges that he faces include:
(i) the definition of multiple measures (unemployment, poverty)
per cube, (ii) the definition of multiple units (percentage, count)
per measure, (iii) reuse standard vocabularies and code lists.

4.1. Defining a measure

Example: John needs to model the measures of the cube at hand
as linked data. He wonders what is the best way to do so.

The cube measure represents the phenomenon being ob-
served (e.g., unemployment). At the QB vocabulary measures
are RDF properties of qb:MeasureProperty type, are defined at
the cube structure (qb:DataStructureDefinition), and are used

10https://github.com/UKGovLD/publishing-statistical-data
11https://sdmx.org/

3



to assign numerical values to the observations (e.g., unemploy-
ment = 7.8%).

Challenge 1: What property should be used to model a mea-
sure of a cube? A common property for modeling a measure
is sdmx-measure:obsValue, which is included in the linked data
transformation of SDMX. This property is typically used in two
ways:

• Re-using sdmx-measure:obsValue as a measure. In this
case, however, the same measure property might be used
to represent different measures. As a result, this approach
has the following disadvantages: (i) it requires additional
meta-data to indicate what is measured, (ii) it does not en-
able the use of multiple measures in a cube, and (iii) it
prevents the linking with other cubes. However, sdmx-
measure:obsValue facilitates the conversion of existing
SDMX data to linked data using the QB vocabulary.

• Defining a new measure property that is sub-property of
sdmx-measure:obsValue. In this case, two challenges may
appear. The first appears when the new measure prop-
erty is generic (e.g., count, ratio) and is used to repre-
sent different measures. The second challenge appears
when two different (synonym) measure properties (e.g.
test: unemployment and eg: unemployment) model the
same measure (e.g., unemployment). Moreover, defin-
ing the new measure property as sub-property of sdmx-
measure:obsValue is a redundancy because it does not add
any additional semantics than defining the measure as a
qb:MeasureProperty.

Based on the above analysis, experts came into consensus
regarding the following approach:

Approach 1. A new measure property should be defined that is
not sub-property of sdmx-measure:obsValue. The new measure
enables the annotation with additional properties (e.g., labels,
comments).

The proposed approach does not fully address the described
challenges (e.g. generic measure properties). There are still
open issues related with the definition of code lists for measures
that are discussed in detail at Section 5.

4.2. Defining the unit

Example: John has already defined unemployment as the mea-
sure of his cube. Now he wonders (i) whether or not to include
the unit of the measure in the cube, (ii) what RDF property to
use to define the unit (iii) where to define the unit, and (iv) what
values to assign.

Unit is the quantity or increment by which the measure is
counted or described. The modeling of the unit raises four chal-
lenges:

Challenge 2.1: Should a cube include the unit of the mea-
sure? The measure on its own is a plain numerical value. To
correctly interpret this value we need to define the unit. How-
ever, it is a common approach not to use units of measure.

Challenge 2.2: What RDF property should be used to define
the unit? At the QB vocabulary, units can be modeled as RDF
properties of qb:AttributeProperty type that are defined at the
cube structure (qb:DataStructureDefinition). The selection of
the unit property may lead to synonym challenges since differ-
ent properties can be used for the same purpose. An approach to
address this challenge is to re-use sdmx-attribute:unitMeasure
property. In practice however, new properties are defined as
sub-properties of sdmx-attribute:unitMeasure as shown in List-
ing 1.

: unit a qb: AttributeProperty ;
rdfs :subPropertyOf sdmx−attribute :unitMeasure.

:dsd a qb: DataStructureDefinition ;
qb:component [qb: attribute : unit ].

Listing 1: Challenge 2.2 - Unit as sub-property of sdmx-attribute:unitMeasure

Challenge 2.3: Where should the unit be defined? The
QB vocabulary enables the definition of units at differ-
ent levels, i.e., the qb:DataSet, the qb:MeasureProperty,
and the qb:Observation. By default, units are as-
signed to qb:Observation, however using the property
qb:componentAttachment different levels can be also used. In
particular, the identified approaches for addressing this chal-
lenge are:

• Defining the unit at the qb:DataSet (Listing 2). This ap-
proach facilitates the retrieval of the available units since
units can be easily identified directly from the structure
of the cube. However, if multiple units are defined at the
same cube, then there is no way to map the unit to the val-
ues at the qb:Observation. Another disadvantage of this
approach is that qb:Observation cannot be easily re-used
at another context, because they do not contain all the rel-
evant information, i.e., the unit is missing.

:unemployment a qb:MeasureProperty.
:dsd a qb: DataStructureDefinition ;

qb:component [
qb: attribute sdmx−attribute :unitMeasure;
qb:componentAttachment qb:DataSet];

qb:component [qb:measure :unemployment].
:cube a qb:DataSet;

qb: structure :dsd;
sdmx−attribute :unitMeasure qudt: Percent .

Listing 2: Challenge 2.3 - Define the unit at qb:DataSet

• Defining the unit at the qb:MeasureProperty (Listing 3).
This approach facilitates the retrieval of the available units
since units can be identified directly from the structure.
Moreover, multiple units can be assigned to a cube. How-
ever, different qb:MeasureProperty should be defined for
different units, although they represent the same mea-
sure, e.g., two separate qb:MeasureProperty should be de-
fined for unemployment, one assigned to percentage and
another assigned to the absolute number. In this case,
qb:Observations cannot easily be re-used at another con-
text, because they do not contain all the relevant informa-
tion, i.e., the unit is missing.

4



:unemploymentPerc a qb:MeasureProperty;
sdmx−attribute :unitMeasure qudt: Percent .

:dsd a qb: DataStructureDefinition ;
qb:component [

qb: attribute sdmx−attribute :unitMeasure;
qb:componentAttachment qb:MeasureProperty];

qb:component [qb:measure :unemploymentPerc].

Listing 3: Challenge 2.3 - Define the unit at qb:MeasureProperty

• Defining the unit at the qb:Observation (Listing 4). In this
case, multiple units can be assigned to a cube and there
is no need to define different qb:MeasureProperty for dif-
ferent units. Moreover, qb:Observations can be re-used at
another context since they contain all relevant information.
However, the retrieval of the available units is not efficient
because it requires iterating over all qb:Observation.

:unemployment a qb:MeasureProperty.
:dsd a qb: DataStructureDefinition ;

qb:component [qb: attribute sdmx−attribute :unitMeasure ];
qb:component [qb:measure :unemployment].

:cube a qb:DataSet;
qb: structure :dsd.

:obs1 a qb:Observation ;
qb: dataset :cube;
unemployment: ‘‘16.8’’ˆˆ xsd:decimal;
sdmx−attribute :unitMeasure qudt: Percent .

Listing 4: Challenge 2.3 - Define the unit at qb:Observation

Table 1 presents a comparison between the three different
levels to define the unit.

Table 1: Comparison matrix of the levels to define the unit
Dataset Measure Observation

Query optimization Yes Yes No
Multiple units at one cube No Yes Yes
Use one qb:MeasureProperty
with different units

Yes No Yes

Re-use qb:Observations at
another context

No No Yes

Challenge 2.4: What values should be used? The
values of the unit property (e.g., percentage) can
be expressed using predefined URIs (e.g., http:

//qudt.org/vocab/unit#Percent). However, the use
of different URIs to express the same unit leads to synonym
challenges, e.g., http://qudt.org/vocab/unit#Percent

and http://statistics.gov.scot/def/concept/

measure-units/percentage define percentage. Three
approaches have been identified to express the unit values:

• Use URIs from the QUDT units vocabulary

• Use URIs from DBpedia

• Define a new code list

Based on the above analysis, the experts came into consensus
regarding the following approaches:

Approach 2.1. A unit of measure should always be included in
the cube. The measure on its own is a plain numerical value
and thus unit is required to correctly interpret this value.

Approach 2.2. sdmx-attribute:unitMeasure should always be
re-used to define units. This property can be used directly to
assign values that are not part of a code list (e.g., QUDT).
However, when annotation with additional properties (e.g., la-
bels, code-list, etc.) is required, then new units that are sub-
properties of sdmx-attribute:unitMeasure should be defined.

Approach 2.3. The unit should be defined at the
qb:Observation. The unit can be additionally defined at
the qb:DataSet in order to facilitate the retrieval of the
available units in a cube.

Approach 2.4. URIs from QUDT should be re-used. If QUDT
is not sufficient, then DBpedia or other code lists can be used.

Fig.1 and Listing 5 present an example that covers Ap-
proaches 2.1 – 2.4.

Figure 1: Approaches 2.1 – 2.4 - Defining the unit

:unemployment a qb:MeasureProperty.
:dsd a qb: DataStructureDefinition ;

qb:component [qb: attribute sdmx−attribute :unitMeasure ];
qb:component [qb:measure :unemployment].

:cube a qb:DataSet;
qb: structure :dsd;
sdmx−attribute :unitMeasure qudt: Percent .

:obs1 a qb:Observation ;
qb: dataset :cube;
:unemployment ‘‘16.8’’ˆˆ xsd:decimal;
sdmx−attribute :unitMeasure qudt: Percent .

Listing 5: Approaches 2.1 – 2.4 - Defining the unit

5



4.3. Defining multiple units per measure

Example: John realizes that the data he wants to publish con-
tain unemployment as both rate, i.e., percentage of the labor
force, and count, i.e., the actual number of unemployed people.
As a result, he needs to include both units. Now he wonders (i)
whether to include both units at the same cube or define sepa-
rate cubes for each unit and (ii) where to define multiple units,
e.g., at the structure or at the observation.

Challenge 3.1: Should one cube include multiple units for
the same measure? It is common to have datasets that describe
a measure (e.g., unemployment) using multiple units (e.g., rate
and count). In this case, there are two modeling approaches that
can be followed and are valid according to the QB voc.:

• Include all units at one cube

• Publish multiple cubes with one unit each

Challenge 3.2: Where to define multiple units? The selec-
tion of the approach to be followed is affected by the level where
the unit is defined as described in Challenge 2.3. For exam-
ple, if multiple units for the same measure are defined at the
qb:DataSet, then there is no way to map the units to the values
at the qb:Observation. Thus, the definition of multiple units at
the qb:DataSet should be avoided.

Based on the above analysis the experts come into a consen-
sus regarding the following approach:

Approach 3. One cube with multiple units should be created
and the unit should be defined at each qb:Observation (Fig. 2
and Listing 6). Conceptually, it is preferable to have all related
units of the same measure in the same cube. The unit can be
additionally defined at the qb:DataSet in order to facilitate the
retrieval of the available units in a cube.

:unemployment a qb:MeasureProperty.
:dsd a qb: DataStructureDefinition ;

qb:component [qb: attribute sdmx−attribute :unitMeasure ];
qb:component [qb:measure :unemployment].

:cube a qb:DataSet;
qb: structure :dsd.

:obs1 a qb:Observation ;
qb: dataset :cube;
:unemployment ‘‘16.8’’ˆˆ xsd:decimal;
sdmx−attribute :unitMeasure qudt: Percent .

:obs2 a qb:Observation ;
qb: dataset :cube;
unemployment ‘‘89600’’ˆˆ xsd: int ;
sdmx−attribute :unitMeasure qudt:Person.

Listing 6: Approach 3 - Defining multiple units per measure

4.4. Defining multiple measures

Example: John wants to publish also data about poverty in Bel-
gium. John wonders whether to publish the data about unem-
ployment and poverty in the same or separate cubes. In case
both measures are included in the same cube, he also wonders

Figure 2: Approach 3 - Defining multiple units per measure

what is the best way to do so, considering that the measures
have multiple units (count and rate).

It is common to have datasets comprising multiple measures
(e.g., unemployment and poverty). In this case, there are two
modeling approaches that can be followed and are valid accord-
ing to the QB vocabulary:

• Publish multiple cubes with one measure each

• Include all measures in one cube

The first approach is covered at Section 4.2 (measure with
one unit) and at Section 4.3 (measure with multiple units).

Challenge 4: How to model multiple measures per cube?
Considering the second approach (multiple measures at one
cube), the QB vocabulary proposes two approaches to represent
multiple measures:

• Multi-measure observations (Listing 7): Define multiple
qb:MeasureProperty in the data structure definition and
use all measures in every qb:Observation. Defining all
the measures in one observation reduces the size of the
produced cube. However, a limitation is that an attribute
property (e.g., unit) cannot be associated to a single mea-
surement. An attribute property attached to the observa-
tion will apply to all measurements, thus it cannot repre-
sent multiple measures with multiple units.

:unemployment a qb:MeasureProperty.
: poverty a qb:MeasureProperty.
:dsd a qb: DataStructureDefinition ;

qb:component [qb:measure :unempolyment];
qb:component [qb:measure : poverty ].

:cube a qb:DataSet;
qb: structure :dsd.

:obs1 a qb:Observation ;
qb: dataset :cube;
:unemployment ‘‘89600’’ˆˆxsd: int ;
: poverty ‘‘153000’’ˆˆ xsd: int .

Listing 7: Multi-measure observations

6



• Measure dimension (Listing 8): Define multiple
qb:MeasureProperty at the data structure definition,
but restrict observations to having a single mea-
sure. This is achieved by defining an extra dimen-
sion, the qb:measureType, to denote which particular
qb:MeasureProperty is included at the qb:Observation.
The use of a single measure at observations produces a
large number of observations, thus increasing the size of
the produced cube. However, this approach enables the
definition of multiple units and multiple measures.

:unemployment a qb:MeasureProperty.
: poverty a qb:MeasureProperty.
:dsd a qb: DataStructureDefinition ;

qb:component [qb:measure :unempolyment];
qb:component [qb:measure : poverty ];
qb:component [qb:dimension qb:measureType].

:cube a qb:DataSet;
qb: structure :dsd.

:obs1 a qb:Observation ;
qb: dataset :cube;
:unemployment ‘‘89600’’ˆˆxsd: int ;
qb:measureType :unemployment.

:obs2 a qb:Observation ;
qb: dataset :cube;
: poverty ‘‘153000’’ˆˆ xsd: int ;
qb:measureProperty : poverty .

Listing 8: Measure dimension

Table 2 presents a comparison of the two approaches to de-
fine multiple measures.

Table 2: Comparison matrix of approaches to define multiple measures
Multi-measure
observations

Measure
dimension

Size of produced cube Small Large
Support of multiple units
and measures

No Yes

Support of multiple mea-
sures with the same unit

Yes Yes

Approach 4.1. If the data have multiple measures, then it is
common to publish cubes with multiple measures only when
measures are closely related to a single observational event
(e.g. sensor network measurements). However, the approach to
be followed is up to the data cube publisher. In case of model-
ing multiple measures in multiple cubes with one measure each,
then Approach 2 (if the measures have one unit) and Approach
3 (if the measures have multiple units) should be followed.

Approach 4.2. In case of modeling multiple measures in one
cube then the measure dimension approach (i.e. observations
with a single measure) should be followed and the unit should
be defined in each observation (as already explained in Ap-
proach 3) (Fig. 3 and Listing 9).

There are still open issues related to the above approaches
since there is not clear definition of an observational event.
These open issues are discussed in detail at section 5.

Figure 3: Approach 4.2 - Defining multiple measures in one cube

:unemployment a qb:MeasureProperty.
: poverty a qb:MeasureProperty.
:dsd a qb: DataStructureDefinition ;

qb:component [qb:measure :unemployment];
qb:component [qb:measure : poverty ];
qb:component [qb:dimension qb:measureType];
qb:component [qb: attribute sdmx−attribute :unitMeasure ].

:cube a qb:DataSet;
qb: structure :dsd.

:obs1 a qb:Observation ;
qb: dataset :cube.
:unemployment ‘‘16.8’’ˆˆ sxsd:decimal;
qb:measureType :unemployment;
sdmx−attribute :unitMeasure qudt: Percent .

:obs2 a qb:Observation ;
qb: dataset :cube;
:unemployment ‘‘89600’’ˆˆ xsd: int ;
qb:measureType :unemployment;
sdmx−attribute :unitMeasure qudt:Person.

:obs3 a qb:Observation ;
qb: dataset :cube;
: poverty ‘‘153000’’ˆˆ xsd: int ;
qb:measureType:poverty;
sdmx−attribute :unitMeasure qudt:Person.

Listing 9: Approach 4.2 - Defining multiple measures in one cube

4.5. Defining dimension properties

Example: John has already defined the measures and the units
of his cube. Now he needs to define the dimensions including

7



time, geography, age and gender. He wonders what RDF prop-
erties to use for these dimensions.

Dimensions (e.g., geography and time) provide con-
textual information for the measures of the cube. In
the QB vocabulary, dimensions are RDF properties of
qb:DimensionProperty type and are defined in the cube struc-
ture (qb:DataStructureDefinition).

Challenge 5: What rdf:Properties should be (re-)used for
common dimensions? The time, geography, age, and gender di-
mensions are common in statistical data. A linked data conver-
sion of SDMX has already defined qb: DimensionProperty to
express them, i.e., sdmx-dimension:refPeriod, sdmx-dimension:
refArea, sdmx-dimension:age, and sdmx-dimension:sex. The
re-use of these properties could alleviate synonym challenges,
which appear when multiple properties are used for the same
dimension.

These SDMX dimensions, however, are not associated to
controlled vocabularies that define dimension values. An ex-
ception is sdmx-dimension:sex, which is associate with a de-
fined code list.

In practice, however, new dimensions are defined as sub-
properties of the SDMX dimensions. An advantage of this ap-
proach is the fact that it enables the addition of extra annotation
to the dimensions (e.g., rdfs:label, code lists, rdfs:range).

Based on the above analysis, the experts came into a consen-
sus regarding the following approaches (Fig.4):

Approach 5.1. If a dimension refers to time, geography, or
age, then a new qb:DimensionProperty should be defined.
This new qb:DimensionProperty should be also defined as
rdfs:subPropertyOf the corresponding SDMX dimension. For
example, a geospatial dimension of a cube should be defined as
sub-property of sdmx-dimension:refArea (Listing 10). Sections
4.6 and 4.7 describe the way the values of a new dimension can
be defined.

:geo a qb:DimensionProperty;
rdfs :subPropertyOf sdmx−dimension:refArea.

:dsd a qb: DataStructureDefinition ;
qb:component [qb:dimension :geo].

Listing 10: Approach 5.1 - Defining a dimension that is sub-property of the
corresponding SDMX dimension

Approach 5.2. If a dimension refers to gender, then sdmx-
dimension:sex should be reused provided that the associated
code list addresses the modeling needs, e.g., more notions of
sex such as hermaphroditism, transgender, and asexual are not
needed (Listing 11). Otherwise, a new dimension should be de-
fined along with a controlled vocabulary (Sections 4.6 and 4.7).

:dsd a qb: DataStructureDefinition ;
qb:component [qb:dimension sdmx−dimension:sex].

Listing 11: Approach 5.2 - Re-using the sdmx-dimension:sex

Figure 4: Approaches 5.1 and 5.2 - Defining common dimension properties

4.6. Associating dimensions with their values
Example: John needs to associate dimensions with their poten-
tial values. He wonders what is the best way to do so.

Dimension values can be either data types (e.g.,
xsd:dateTime) or URIs. In the latter case, URIs can be grouped
in either code lists that are modeled as skos:ConceptScheme,
skos:Collection, or qb:HierarchicalCodeList or as reference
datasets (e.g., http://reference.data.gov.uk) that are
not modelled in one of the above ways.

Challenge 6: How to associate a dimension to its values?
The QB vocabulary allows two complementary approaches for
associating dimensions with their potential values:

• Using the property rdfs:range to define the class of the val-
ues of a qb:DimensionProperty following the typical RDF
practice. For example, the values of the temporal dimen-
sion of a cube can be defined by setting the rdfs:range of
the dimension to xsd:dateTime.

• Using the property qb:codeList to associate a
qb:DimensionProperty with a code list (i.e., poten-
tial values). In statistical datasets it is common for values
to be encoded using a code list and it is useful to easily
identify the overall code list with a URI. The object of
the qb:codeList property can be a skos:ConceptScheme,
skos:Collection or qb:HierarchicalCodeList. In such
case the rdfs:range can be a skos:Concept. According
to the QB vocabulary a useful design pattern is to define
an rdfs:Class whose members are all the skos:Concepts
within a particular code list. In this way the rdfs:range
can be made more specific.

Based on the above analysis the experts came into a consen-
sus regarding the following approaches (Fig.5):

Approach 6.1. The rdfs:range of a qb:DimensionProperty
should always be defined (Listing 12).

:d a qb:DimensionProperty
rdfs : range xsd:dateTime.

:dsd a qb: DataStructureDefinition ;
qb:component [qb:dimension :d ].

Listing 12: Approach 6.1 - Associating a dimension with its values using
rdfs:range

8



Figure 5: Approaches 6.1 and 6.2 - Associating dimensions with their values
using (a) rdfs:range and (b) both rdfs:range and qb:codeList

Approach 6.2. If a code list is modelled as
skos:ConceptScheme, qb:HierarchicalCodeList, or
skos:Collection, then it should be associated with the
qb:DimensionProperty using the qb:codeList property. In
addition, the object that is related to the rdfs:range property
should be set to skos:Concept (Listing 13). Section 4.9
describes how a new code list can be created.

:d a qb:DimensionProperty;
rdfs : range skos:Concept;
qb:codeList : cl .

:dsd a qb: DataStructureDefinition ;
qb:component [qb:dimension :d ].

Listing 13: Approach 6.2 - Associating a dimension with its values using both
rdfs:range and qb:codeList

4.7. Defining values of common dimensions

Example: John now knows how to associate his cube’s dimen-
sions with their values. However, he wonders (i) whether to
use data types or URIs and (ii) in case of URIs, what code lists
to use to define values of common dimensions including time,
geography, age, and gender.

The definition of values of these common dimensions raises
three challenges:

Challenge 7.1: What values should be used in time re-
lated dimensions? The values of time dimension can be ei-
ther periods of time (e.g., 2016) or specific points in time (e.g.,
01/01/2016), and thus they can be represented either as URIs
(e.g., http://reference.data.gov.uk/id/year/2016) or
as data types (e.g., “2016-01-01”ˆˆxsd:date). The selection of
the approach to represent the time values may lead to synonym
challenges since different values can be used for the same pur-
pose. Four approaches are commonly used to express time val-
ues:

• Using URIs from http://reference.data.gov.uk,
which, however, is not defined as a skos:ConceptScheme

• Using resources from DBpedia, which are not included in
a skos:ConceptScheme

• Defining a new code list

Figure 6: Approach 7.1a - Describing a specific point in time

• Using XSD date and time data types

Challenge 7.2: What values should be used in geospatial
dimensions? The values of geospatial dimensions are usually
represented as URIs. Although some official location-specific
code lists have been defined in specific countries, regions, etc.,
the selection of URIs to represent these values may lead to syn-
onym challenges since different values can be used for the same
purpose.

Challenge 7.3: What values should be used in age related
dimensions? Currently, there are no standardized code lists that
can be used for these dimensions. As a result, synonym chal-
lenges may also appear.

Challenge 7.4: What values should be used in gender re-
lated dimensions? The values of the gender dimension are usu-
ally represented as URIs. The linked data version of SDMX
has already defined a code list for gender including the val-
ues sdmx-code:sex-F (female), sdmx-code:sex-M (male), sdmx-
code:sex-U (undefined), sdmx-code:sex-N (not applicable) and
sdmx-code:sex-T (total). In some cases however, the SDMX
code list cannot cover the modeling needs, e.g., more notions
of sex are needed like hermaphroditism, transgender, asexual.
This challenge is addressed by Approach 5.2.

Based on the above analysis the experts came into a consen-
sus regarding the following approaches:

Approach 7.1a. In case of a specific point in time a
new dimension should be defined. This dimension should
be rdfs:subPropertyOf sdmx-dimension:refPeriod and have
rdfs:range xsd:dateTime (Fig.6 and Listing 14).

: time a qb:DimensionProperty;
rdfs :subPropertyOf sdmx−dimension:refPeriod;
rdfs : range xsd:dateTime.

:dsd a qb: DataStructureDefinition ;
qb:component [qb:dimension :time ].

Listing 14: Approach 7.1a - Describing a specific point in time

Approach 7.1b. In case of a period of time, a new
dimension should be defined. This dimension should
be rdfs:subPropertyOf sdmx-dimension:refPeriod and have
rdfs:range the interval:Interval class of the http: //

reference. data. gov. uk , which uses this class to define

9



Figure 7: Approach 7.1b - Describing a period of time

Figure 8: Approach 7.2 - Defining values of geography and age

years (Fig.7 and Listing 15). However, if the approach of
http: // reference. data. gov. uk is not sufficient, then
new code lists can be also created and used (Section 4.9).

: time a qb:DimensionProperty;
rdfs :subPropertyOf sdmx−dimension:refPeriod;
rdfs : range interval : Interval .

:dsd a qb: DataStructureDefinition ;
qb:component [qb:dimension :time ].

Listing 15: Approach 7.1b - Describing a period of time

Approach 7.2. In case of a geography or age related dimen-
sion, a new dimension should be defined. This dimension should
be rdfs:subPropertyOf the sdmx-dimension:refArea or sdmx-
dimension:age respectively (Fig.8 and Listing 16). Moreover,
the rdfs:range and/or qb:codeList of this dimension should be
defined as described in Section 4.6. If a code list or reference
dataset that addresses the modeling needs exists, then it should
be re-used. Otherwise, a new code list should be created (see
Section 4.9).

:geo a qb:DimensionProperty;
rdfs :subPropertyOf sdmx−dimension:refArea;
qb:codeList :BEgeo;
rdfs : range skos:Concept.

:dsd a qb: DataStructureDefinition ;
qb:component [qb:dimension :geo]

Listing 16: Approach 7.2 - Defining values of geography and age

4.8. Modeling single value dimensions

Example: The cube at hand includes data only for one year, i.e.,
2016. John wonders (i) whether or not to include this single
value in the data cube and (ii) if so, what modeling approach to
follow.

Some datasets describe a measure using only a single value
of a dimension. For example, census data describe multiple
measures for a specific year.

Challenge 8: How to model single value dimensions? The
QB vocabulary enables defining this single value at different
levels:

• Including the single value at the qb:Dataset. In this case,
the single value is easily identified directly from the struc-
ture. However, it does not enable future addition of ob-
servations with a different value for that particular di-
mension. Another disadvantage of this approach is that
qb:Observations cannot easily be re-used at another con-
text, because they do not contain all the relevant informa-
tion, i.e., the dimension with the single values is missing.

• Creating a qb:Slice for the single value. In this case, the
single value is easily identified from the structure. Ob-
servations with a different dimension value can be latter
added by creating a new qb:Slice for this value. A disad-
vantage of this approach is that it imposes the extra burden
of defining qb:Slices when creating the cube. Moreover,
qb:Observations cannot easily be re-used at another con-
text, because they do not contain all the relevant informa-
tion, i.e., the dimension with the single values is missing.

• Including the single value at every qb:Observation. This
approach enables simple and flexible data maintenance.
In particular, it enables the addition of more observations
with different dimension values in the same dataset and the
easy re-use of qb:Observations at another context. This
approach has, however, the cost of an increased number of
triples.

:obs1 a qb:Observation ;
sdmx−dimension:sex sdmx−code:sex−M;
:age :15−24;
:geo : Brussels ;
: time year :2017;
sdmx−attribute :unitMeasure qudt: Percent ;
:unemployment ‘‘35.1’’ˆˆ xsd:decimal.

:obs2 a qb:Observation ;
sdmx−dimension:sex sdmx−code:sex−F;
:age :15−24;
:geo : Brussels ;
: time year :2017;
sdmx−attribute :unitMeasure qudt: Percent ;
:unemployment ‘‘36.7’’ˆˆ xsd:decimal.

Listing 17: Approach 8 - Modeling the single value of a dimension at each
qb:Observation

Based on the above analysis the experts come into a consen-
sus regarding the following approach:

10



Figure 9: Approach 8 - Modeling the single value of a dimension at each
qb:Observation

Approach 8. A single value dimension should be always in-
cluded in all observations of the cube (Fig.9 and Listing 17).

4.9. Creating code lists
Example: John has already defined dimension properties and
decided the code lists to use for two dimensions, namely time
and gender. However, there are no appropriate code lists for
age and geography related dimensions, and thus John has to
create them.

The creation of code lists raises three challenges:
Challenge 9.1: How to model a new code list? Existing

code lists do not always address the modeling needs of a spe-
cific case. As a result, new code lists should be created. The
QB vocabulary recommends using SKOS to model a code list.
In particular, it recommends representing the individual code
values using skos:Concept and the overall set of values using
skos:ConceptScheme or skos:Collection.

Challenge 9.2: How to model hierarchical structures in a
code list? Typically, cubes include data with hierarchical struc-
tures (e.g., geographical or administrative divisions). In prac-
tice, however, these structures are not always explicitly de-
fined in code lists. Hierarchical structures comprise generaliza-
tion/specialization relations (e.g., Brussels is part of Belgium)
and hierarchical levels (e.g., country, region, city). Various
properties can be used for modeling these relations and levels.
The following approaches can be used to represent hierarchical
code lists:

Figure 10: Using SKOS vocabulary to model hierarchical code lists

Figure 11: Using XKOS vocabulary to model hierarchical code lists

• Using SKOS vocabulary. This approach defines only gen-
eralization/specialization relations, i.e., skos:broader and
skos:narrower between skos:Concepts (Fig.10 and Listing
18).

:Belgium a skos:Concept.
: Brussels a skos:Concept;

skos: broader :Belgium.
:Wallonne a skos:Concept;

skos: broader :Belgium.

Listing 18: Using SKOS vocabulary to model hierarchical code lists

• Using XKOS vocabulary. XKOS is an extension of SKOS
that enables modeling both generalization/specialization
relations (i.e., xkos:isPartOf, xkos:hasPart) and hierarchi-
cal levels (i.e., xkos: ClassificationLevel) of skos: Con-
cepts (Fig.11 and Listing 19).

:Belgium a skos:Concept.
: Brussels a skos:Concept;

xkos: isPartOf :Belgium.
:Wallonne a skos:Concept;

xkos: isPartOf :Belgium.
:Country a xkos: ClassificationLevel ;

skos:member :Belgium.
:Region a xkos: ClassificationLevel ;

skos:member :Brussels;
skos:member :Wallonne.

Listing 19: Using XKOS vocabulary to model hierarchical code lists

• Using the QB vocabulary. In this case, a
qb:HierarchicalCodeList should be defined to

11



Figure 12: Using the QB vocabulary to model hierarchical code lists

represent the overall set of values (similar to
skos:ConceptScheme). The qb:hierarchyRoot serves
the same purpose as skos:hasTopConcept, and the value
of qb:parentChildProperty serves the same purpose as
skos:narrower (Fig.12 and Listing 20). This approach is
provided for cases where the terms are not available as
SKOS but are available in some other RDF representation
suitable for reuse.

• Sometimes, case specific properties are exploited to ex-
press hierarchies. This approach enables the definition of
generalization/specialization relations that are not covered
by SKOS and XKOS (e.g., administered by and within).
However, without using any standard vocabulary the inter-
pretation of the data is not always feasible.

:BEgeo a qb: HierarchicalCodelist ;
qb: parentChildProperty : contains ;
qb:hierarchyRoot :Belgium.

:Belgium a skos:Concept;
: contains : Brussels ;
: contains :Wallonne.

: Brussels a skos:Concept.
:Wallonne a skos:Concept.

Listing 20: Using the QB vocabulary to model hierarchical code lists

Challenge 9.3: Should aggregate (e.g., “Total”) values be
included as dimension values? A common practice suggests
that aggregate values should be included in a dimension (e.g.,
male, female and total). These values that are pre-computed us-
ing various aggregate functions facilitate performing complex
operations (e.g., OLAP operations) on top of data cubes. In
practice, however, aggregate values cannot be differentiated in
a code list. For example, the linked data version of SDMX con-
tains the values sdmx-code:sex-F, sdmx-code:sex-M, and sdmx-
code:sex-T (i.e., Total) without any extra semantics that would
facilitate distinguishing the last one as an aggregate value. It
is important these values to be differentiated from other values,
otherwise there is a risk of inaccurate interpretation of the data
(e.g., duplicate the values).

Figure 13: Define aggregate values at the top of the hierarchy

Figure 14: Defining aggregate values on slices

The following approaches have been proposed to differenti-
ate aggregate values.

• Use a hierarchy and define aggregate values on top of the
hierarchy (Fig.13). The approach to express the hierarchy
is based on Challenge 9.2.

• Define aggregate values on slices. The aggregate value
of a dimension can be also represented by excluding the
specific dimension from the slice. In Fig.14 and Listing
21 a slice that defines the “Total” unemployment (35.9%)
for both genders (i.e., male and female) with age 15-24, in
Brussels in 2016 is presented.

:age a qb:DimensionProperty.
:geo a qb:DimensionProperty.
: time a qb:DimensionProperty.
: slice by sex a qb:SliceKey

qb:dimension :age;
qb:dimension :geo;
qb:dimension :time.

: slice tot a qb: Slice ;
qb: sliceStructure : slice by sex ;
:age :15−24;
:geo : Brussels ;
: time year :2016;
:unemployment ‘‘35.9’’ˆˆ xsd:decimal;
sdmx−attribute :unitMeasure qudt: Percent .

Listing 21: Defining aggregate values on slices

12



Figure 15: Approach 9.1 - Use SKOS to model code lists

Based on the above analysis, the experts came into consensus
regarding the following approach:

Approach 9.1. A code list should be modelled using SKOS.
This is also suggested by the QB vocabulary. Specifically, in-
dividual code values should be modelled using skos:Concept
and the overall set of values should be modelled using
skos:ConceptScheme or skos:Collection (Fig.15 and Listing
22). Always define a separate code list for each distinct set
of values (e.g., age groups and geographical areas).

Approach 9.2. In case of hierarchical data, hierarchical code
lists should be always used to describe them. SKOS should be
preferred when the hierarchies are simple. In case where the
hierarchical levels are fully separated and depth is a meaning-
ful concept then XKOS is appropriate. Finally, when there is a
need to express more relations that are not covered by SKOS or
XKOS (e.g., administeredBy in contrast to within) then the QB
vocabulary should be preferred.

Approach 9.3. Aggregate values (e.g., “Total”) should be in-
cluded in a dimension if the measured variable in this dimen-
sion can be aggregated. The aggregate value should be mod-
elled on the top a hierarchy (Approach 9.2).

:15−24 a skos:Concept.
:25−34 a skos:Concept.
: Brussels a skos:Concept.
:Wallone a skos:Concept.
:AgeList a skos:ConceptScheme;

skos:hasTopConcept :15−24;
skos:hasTopConcept :25−34.

:BEgeo a skos:ConceptScheme;
skos:hasTopConcept :Brussels ;
skos:hasTopConcept :Wallone.

Listing 22: Approach 9.1 - Using SKOS to model code listss

5. Open challenges

During the Delphi process experts and practitioners indicated
a number of open challenges. These open challenges regard,

limitations of existing standards, lack of standards and model-
ing decisions. In the following paragraphs we present the iden-
tified open challenges.

An important challenge is the definition of code lists for mea-
sures that could be re-used by LOSD publishers. Currently each
LOSD publisher defines its own qb:MeasureProperty for the
same measure (e.g. p1:unemployment and p2:unemployment).
The definition of a “standard” code list would enable the pub-
lishing of LOSD in a uniform way, thus facilitating the integra-
tion and combination of related statistical data from different
sources.

Another challenge is related with the method (e.g. formula)
a measure is calculated. For example, unemployment can be
calculated based on different methods or different base periods
(e.g. relative changes with respect to certain point in time).
In this case there is a discussion whether to use the same
qb:MeasureProperty or define different.

Composite measures may be derived from other measures
[34, 35] e.g. “Unemployment Rate” as ratio of the number of
unemployed people in the labour force to the total labour force.
This relation should somehow be expressed by linking to the
number of unemployed people and the total labour force. In this
case the computation of aggregated “total” values for composite
measures would also be possible. For example the computation
of the “total unemployment rate” based on “male” and “female”
unemployment rate. Currently, there is no LOSD standard that
can express these relations.

Additionally, having explicitly defined which aggregation
functions (e.g. sum, average, mean, min, max) are applicable
to a measure is useful for presentation and further processing
purposes. QB4OLAP [20] has proposed an extension of QB
vocabulary to express aggregation function. The applicability
of aggregate functions to measures depends on various factors
[36] (e.g. cube dimensions, units) and needs to be further ex-
plored.

A modeling challenge is related with the definition of multi-
ple measures at a cube. Our study has shown that cubes with
multiple measures should be published only when measures are
closely related to a single observational event (e.g. sensor net-
work measurements). If the measures are essentially indepen-
dent then they should be modelled at separate cubes. However,
there’s a large grey area between the two since it depends on

13



what is defined as an observational event and at the actual us-
age of the data.

Finally, there are some challenges related with the perfor-
mance of applications that consume LOSD. For instance, the
use of the qb:codeList indicates all the potential values of a
qb:DimensionProperty. However, it is common to not use all
the values at the cube e.g. a code list may contain values for the
geography of Europe, but the cube uses only values for Greece.
In this case there is no way to retrieve only the used values
from the cube structure. They can be only retrieved by demand-
ing SPARQL queries that iterate over all the cube observations.
The same case also applies to units of measure e.g. the units
used at a cube versus all the units of the code list.

6. Conclusion

A major part of open data concern statistics. Recently
many National Statistical Institutes and public authorities have
adopted the linked data paradigm to publish Linked Open Sta-
tistical Data (LOSD) because it facilitates data integration on
the Web. Towards this direction many standard vocabularies
have been proposed (i.e., QB, SKOS, XKOS).

The publication of high quality LOSD can be an important
primary material for added value services and products, which
can increase government transparency, contribute to economic
growth and provide social value to citizens. However, the cre-
ation of LOSD remains a demanding task mainly because of
modelling challenges related either to the conceptual definition
of the cube, or to the way of modelling cubes as linked data.
These challenges are usually addressed by data publishers in an
ad hoc manner thus hindering the publishing of LOSD in a uni-
form way and lead to the creation of LOSD silos. As a result
LOSD from different sources cannot be easily integrated and
generic software tools cannot be developed.

Towards this direction, experts and practitioners, that directly
participate at the publishing of LOSD, are involved through an
iterative approach in order to comprehend the modeling chal-
lenges, identify relevant publishing approaches and propose
way to address these challenges. The result is a set of proposed
approaches that support LOSD publishers to model their data
and to apply common standards. However a set of open chal-
lenges related with the limitations of existing standards, lack of
standards and modeling decisions still remain to be explored.

We anticipate that the analysis of the modelling challenges
as well as the proposed approaches presented at this paper will
trigger and contribute towards a discussion on the development
of best practices for publishing LOSD, facilitating the combin-
ing and analysing of linked statistical data from diverse sources.

Acknowledgement

Part of this work was funded by the European Commis-
sion within the H2020 Programme in the context of the project
OpenGovIntelligence (http://OpenGovIntelligence.eu)
under grant agreement no. 693849. The authors would like
to cordially thank all the experts who participated in the study.

References

[1] E. Kalampokis, E. Tambouris, K. Tarabanis, A classification scheme for
open government data: towards linking decentralised data, Int. J. Web
Eng. Technol 6 (3) (2011) 266—285.

[2] J. Attard, F. Orlandi, S. Scerri, S. Auer, A systematic review of open gov-
ernment data initiatives, Government Information Quarterly 32 (4) (2015)
399 – 418. doi:https://doi.org/10.1016/j.giq.2015.07.006.

[3] A. Zuiderwijk, M. Janssen, Open data policies, their implementation and
impact: A framework for comparison, Government Information Quar-
terly 31 (1) (2014) 17 – 29. doi:https://doi.org/10.1016/j.giq.2013.04.003.
URL http://www.sciencedirect.com/science/article/pii/

S0740624X13001202

[4] E. Commission, Commission notice — guidelines on recommended stan-
dard licences, datasets and charging for the reuse of documents (2014).

[5] S. Capadisli, S. Auer, A.-C. Ngonga Ngomo, Linked sdmx data, Semantic
Web 6 (2).

[6] R. Cyganiak, M. Hausenblas, E. McCuirc, Official statistics and the prac-
tice of data fidelity (2011) 135–151.

[7] E. Kalampokis, E. Tambouris, A. Karamanou, K. Tarabanis, Open statis-
tics: The rise of a new era for open data?, in: H. J. Scholl, O. Glassey,
M. Janssen, B. Klievink, I. Lindgren, P. Parycek, E. Tambouris, M. A.
Wimmer, T. Janowski, D. Sá Soares (Eds.), Electronic Government,
Springer International Publishing, Cham, 2016, pp. 31–43.

[8] M. Janssen, J. van den Hoven, Big and open linked data (bold)
in government: A challenge to transparency and privacy?,
Government Information Quarterly 32 (4) (2015) 363 – 368.
doi:https://doi.org/10.1016/j.giq.2015.11.007.
URL http://www.sciencedirect.com/science/article/pii/

S0740624X15001069

[9] B. F. Lóscio, C. Burle, N. Calegari, Data on the web best practices:w3c
recommendation, 2017.

[10] C. Bizer, T. Heath, T. Berners-Lee, Linked data-the story so far, Seman-
tic Services, Interoperability and Web Applications: Emerging Concepts
(2009) 205–227.

[11] A. Abelló, J. Darmont, L. Etcheverry, M. Golfarelli, J.-N. Mazón, F. Nau-
mann, T. Pedersen, S. B. Rizzi, J. Trujillo, P. Vassiliadis, G. Vossen, Fu-
sion cubes: Towards self-service business intelligence, Int. J. Data Ware-
hous. Min. 9 (2) (2013) 66–88. doi:10.4018/jdwm.2013040104.

[12] E. Kalampokis, E. Tambouris, K. Tarabanis, Linked open cube analytics
systems: Potential and challenges, IEEE Intelligent Systems 31 (5) (2016)
89–92.

[13] S. Bischof, A. Harth, B. Kampgen, A. Polleres, P. Schnei-
der, Enriching integrated statistical open city data by combining
equational knowledge and missing value imputation, Web Seman-
tics: Science, Services and Agents on the World Wide Web-
doi:https://doi.org/10.1016/j.websem.2017.09.003.

[14] J. Kli-mek, J. Kucera, M. Necasky, D. Chlapek, Publication and usage of
official czech pension statistics linked open data, Journal of Web Seman-
tics 48 (2018) 1 – 21. doi:https://doi.org/10.1016/j.websem.2017.09.002.

[15] E. Chaniotaki, E. Kalampokis, E. Tambouris, K. Tarabanis, A. Stasis, Ex-
ploiting linked statistical data in public administration: The case of the
greek ministry of administrative reconstruction, in: 23rd Americas Con-
ference on Information Systems (AMCIS2017), 2017.

[16] R. Cyganiak, D. Reynolds, The rdf data cube vocabulary:w3c recommen-
dation, 2014.

[17] A. Miles, S. Bechhofer, Skos simple knowledge organization system ref-
erence: W3c recommendation, 2009.

[18] R. Cyganiak, D. Gillman, R. Grim, Y. Jaques, W. Thomas, Xkos: An skos
extension for representing statistical classifications, 2017.

[19] V. Mijovic, V. Janev, D. Paunovic, S. Vranes, Exploratory spatio-temporal
analysis of linked statistical data, Journal of Web Semantics 41 (Supple-
ment C) (2016) 1 – 8. doi:https://doi.org/10.1016/j.websem.2016.10.002.

[20] J. Varga, A. A. Vaisman, O. Romero, L. Etcheverry, T. B.
Pedersen, C. Thomsen, Dimensional enrichment of statistical
linked open data, Journal of Web Semantics 40 (2016) 22 – 51.
doi:http://dx.doi.org/10.1016/j.websem.2016.07.003.

[21] E. Kalampokis, B. Roberts, A. Karamanou, E. Tambouris, K. Tara-
banis, Challenges on developing tools for exploiting linked open data
cubes, in: 3rd International Workshop on Semantic Statistics (Sem-
Stats2015) co-located with the 14th International Semantic Web Confer-
ence (ISWC2015), CEUR-WS, Vol.1551., 2015.

14



[22] C.-C. Hsu, B. A. Sandford, The delphi technique: making sense of con-
sensus, Practical assessment, research & evaluation 12 (10) (2007) 1–8.

[23] S. J. Young, L. M. Jamieson, Delivery methodology of the delphi: A com-
parison of two approaches., Journal of Park & Recreation Administration
19 (1) (2001) 42 – 58.

[24] H. A. Linstone, M. Turoff, Delphi: A brief look backward and forward,
Technological Forecasting and Social Change 78 (9) (2011) 1712–1719.

[25] C. Okoli, S. D. Pawlowski, The delphi method as a research tool: an
example, design considerations and applications, Information & manage-
ment 42 (1) (2004) 15–29.

[26] R. L. Custer, J. A. Scarcella, B. R. Stewart, The modified delphi tech-
nique: A rotational modification., Journal of Vocational and Technical
Education 15 (2) (1999) 1 – 10.

[27] R. Gnanadesikan, Methods for statistical data analysis of multivariate ob-
servations, Vol. 321, John Wiley & Sons, 2011.

[28] F. S. Tseng, C.-W. Chen, Integrating heterogeneous data warehouses us-
ing xml technologies, Journal of Information Science 31 (3) (2005) 209–
229. doi:10.1177/0165551505052467.

[29] S. Berger, M. Schrefl, From federated databases to a federated data ware-
house system, in: Proceedings of the 41st Annual Hawaii International
Conference on System Sciences, IEEE, 2008, pp. 394–394.

[30] A. Datta, H. Thomas, The cube data model: a conceptual model and al-
gebra for on-line analytical processing in data warehouses, Decision Sup-
port Systems 27 (3) (1999) 289–301.

[31] L. Cabibbo, R. Torlone, A logical approach to multidimensional
databases, in: Advances in Database Technology–EDBT’98, Springer,
1998, pp. 183–197.

[32] M. Hausenblas, Exploiting linked data to build web ap-
plications, IEEE Internet Computing 13 (4) (2009) 68–73.
doi:http://doi.ieeecomputersociety.org/10.1109/MIC.2009.79.

[33] B. F. Loscio, C. Burle, N. Calegari, Data on the web best practices: W3c
recommendation, 2017.

[34] S. F. Pileggi, J. Hunter, An ontological approach to dynamic fine-grained
urban indicators, Procedia Computer Science 108 (2017) 2059 – 2068,
international Conference on Computational Science, ICCS 2017, 12-14
June 2017, Zurich, Switzerland.

[35] M. Denk, W. Grossmann, Towards a best practice of modeling unit of
measure and related statistical metadata, IMF working paper.

[36] E. Kalampokis, E. Tambouris, K. Tarabanis, ICT tools for creating, ex-
panding, and exploiting statistical linked open data, Statistical Journal of
the IAOS 33 (2) (2017) 503–514.

15


